国产成人一区二区三区视频免费|优选国产av网站|老熟妇仑乱视频一区二区|亚洲精品无码AV人在线观看

            1. 主頁 > 教育資訊 >

            一次函數(shù)與方程不等式教案獲獎精選2篇

            據(jù)自成學歷信息網(wǎng)小編的了解,《一次函數(shù)與方程不等式教案獲獎精選2篇》,原來具體內(nèi)容是這樣的。

            教案是教師實施課堂教學的操作性方案,它重在設定教學的內(nèi)容和行為,即:“教什么”。是整個課堂教學工作的重要組成部分。教案對于教師課堂教學有著重要的意義。以下是小編整理的一次函數(shù)與方程不等式教案相關內(nèi)容,供大家參考借鑒,希望可以幫助到有需要的朋友,歡迎閱讀與收藏。

            一次函數(shù)與方程不等式教案1

            教學目標:

            知識與技能

            1、初步掌握函數(shù)概念,能判斷兩個變量間的關系是否可看作函數(shù)。

            2、根據(jù)兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

            3、會對一個具體實例進行概括抽象成為數(shù)學問題。

            過程與方法

            1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

            2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

            情感與價值觀

            1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

            2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

            教學重點:

            1、掌握函數(shù)概念。

            2、判斷兩個變量之間的關系是否可看作函數(shù)。

            3、能把實際問題抽象概括為函數(shù)問題。

            教學難點:

            1、理解函數(shù)的概念。

            2、能把實際問題抽象概括為函數(shù)問題。

            教學過程設計:

            一、創(chuàng)設問題情境,導入新課

            『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

            函數(shù)數(shù)學教案2

            教學目標

            1.知識與技能

            理解一次函數(shù)與一元一次不等式的關系,發(fā)展學生的認知體系.

            2.過程與方法

            經(jīng)歷探索一次函數(shù)與一元一次不等式的關系的過程,掌握其應用方法.

            3.情感、態(tài)度與價值觀

            培養(yǎng)良好的數(shù)學抽象思維,體會本節(jié)課知識在現(xiàn)實生活中的應用價值.

            重、難點與關鍵

            1.重點:一次函數(shù)與一元一次不等式的關系.

            2.難點:如何應用一次函數(shù)性質(zhì)解決一元一次不等式的解集問題.

            3.關鍵:從一次函數(shù)的圖象出發(fā),直觀地呈現(xiàn)出一元一次不等式的解的范圍.

            教具準備

            采用“問題解決”的教學方法.

            教學過程

            一、回顧交流,知識遷移

            問題提出:請思考下面兩個問題:

            (1)解不等式5x+6>3x+10;

            (2)當自變量x為何值時,函數(shù)y=2x-4的值大于0?

            學生活動觀察屏幕,通過思考,得到(1)、(2)的答案,回答問題.

            教師活動在學生充分探討的基礎上,引導學生思考:“一元一次不等式與一次函數(shù)之間有何內(nèi)在聯(lián)系?”

            思路點撥在問題(1)中,不等式5x+6>3x+10可以轉化為2x-4>0,解這個不等式得x>2;問題(2)就是解不等式2x-4>0,得出x>2時函數(shù)y=2x-4的值大于0,因此這兩個問題實際上是同一個問題,從直線y=2x-4(如圖)可以看出.當x>2時,這條直線上的點在x軸的上方,即這時y=2x-4>0.

            問題探索

            教師敘述:由上面兩個問題的關系,能進一步得到“解不等式ax+b>0”與“求自變量x在什么范圍內(nèi),一次函數(shù)y=ax+b的值大于0”有什么關系?

            學生活動小組討論,觀察上述問題的圖象,聯(lián)系不等式、函數(shù)知識,解決問題.

            師生共識由于任何一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看出:當一次函數(shù)值大(小)于0時,求自變量相應的取值范圍.

            教學形式師生互動交流,生生互動.

            二、范例點擊,領悟新知

            例2用畫函數(shù)圖象的方法解不等式5x+4<2x+10.

            教師活動激發(fā)思考.

            學生活動小組合作討論,運用兩種思維方法解決例2問題.

            解法1:原不等式化為3x-6<0,畫出直線y=3x-6(左圖),可以看出,當x<2時,這條直線上的點在x軸的下方,即這時y=3x-6<0,所以不等式的解集為x<2.

            解法2:將原不等式的兩邊分別看作兩個一次函數(shù),畫出直線y=5x+4與直線y=2x+10(右圖),可以看出,它們交點的橫坐標為2,當x<2時,對于同一個x,直線y=5x+4上的點在直線y=2x+10上相應點的下方,這時5x+4<2x+10,所以不等式的解集為x<2.

            評析兩種解法都把解不等式轉化為比較直線上點的位置的高低.

            三、隨堂練習,鞏固深化

            課本P216練習.

            四、課堂,發(fā)展?jié)撃?/p>

            用一次函數(shù)圖象來解一元一次方程或一元一次不等式未必簡單,但是從函數(shù)角度看問題,能發(fā)現(xiàn)一次函數(shù)、一元一次方程與一元一次不等式之間的關系,能直觀地看到怎樣用圖形來表示方程的解與不等式的解,這種用函數(shù)觀點認識問題的方法,對于繼續(xù)學習數(shù)學是重要的.

            五、布置作業(yè),專題突破

            課本P129習題14.3第3,4,7,8,10題.

            聲明:本站為成考自考學歷交流信息網(wǎng)站,所有信息內(nèi)容均收集于互聯(lián)網(wǎng),本網(wǎng)提供的信息僅供參考和非商業(yè)性學習目的,由于各方面情況的調(diào)整與變化,實際情況以當?shù)貦嗤C構部門、院校公布的信息為準。

            聯(lián)系我們

            在線咨詢:點擊這里給我發(fā)消息

            微信號:

            工作日:9:30-18:30,節(jié)假日休息