2023年成考數(shù)學(xué)知識(shí)點(diǎn)整理 高頻公式筆記梳理
據(jù)自成學(xué)歷信息網(wǎng)小編的了解,《2023年成考數(shù)學(xué)知識(shí)點(diǎn)整理 高頻公式筆記梳理》,原來(lái)具體內(nèi)容是這樣的。
成人高考數(shù)學(xué)科目通常涵蓋了數(shù)學(xué)的基礎(chǔ)知識(shí)和一些常見(jiàn)的應(yīng)用題。以下是2023年成考數(shù)學(xué)科目的主要知識(shí)點(diǎn)。備考時(shí),考生需要熟練掌握上述知識(shí)點(diǎn),并進(jìn)行大量的練習(xí),尤其是做題訓(xùn)練,以提高解題能力。
2023年成考數(shù)學(xué)知識(shí)點(diǎn)匯總
一、集合有關(guān)概念
1. 集合的含義
2. 集合的中元素的三個(gè)特性:
1)元素的確定性如:世界上最高的山
2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
3)元素的無(wú)序性: 如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
u 注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集) 記作:N
正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個(gè)元素的集合
(2) 無(wú)限集 含有無(wú)限個(gè)元素的集合
(3) 空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)
實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A≠B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)
③如果 AíB, BíC ,那么 AíC
④ 如果AíB 同時(shí) BíA 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集,空集是任何非空集合的真子集。
u 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
交集和并集
1、取集合A和集合B的公共部分,記作A∩B。
2、取集合A和集合B的全部元素,記作A∪B。
簡(jiǎn)單邏輯
1、充分條件:如果A成立,那么B成立,“A推出B,B不能推出A”。
2、必要條件:如果B成立,那么A成立,“B推出A,A不能推出B”。
3、充要條件:如果A→B,又有A←B,“A推出B,B推出A”。
函數(shù)部分
1、絕對(duì)值的不等式
絕對(duì)值不等式的解法:
|ax+b|<c,相當(dāng)于解不等式-c<ax+b<c,< p=””>
(當(dāng)a<0的時(shí)候,不等號(hào)要改變方向
|ax+b|>c相當(dāng)于解不等式ax+b>c或ax+b<-c
2、常見(jiàn)函數(shù)的定義域
3、函數(shù)的單調(diào)性
第一種方法用取值法:任取2個(gè)數(shù)x1,x2,且x1<x2,< p=””>
若f(x1)f(x2),則為減函數(shù)。
第二種方法用求導(dǎo)法(見(jiàn)后面)。
4、函數(shù)的奇偶性
令x=-x,若f(-x)=-f(x),則f(x)為奇函數(shù);
若f(-x)=f(x),則f(x)為偶函數(shù)。
向量和直線
1、向量
設(shè)a=(x1,y1)b=(x2,y2),則:
加法運(yùn)算:a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)
減法運(yùn)算:a-b=(x1,y1)-(x2y2)=(x1-x2:y1-y2)
數(shù)乘運(yùn)算:ka=k(x1,y1)=(kx1,ky1)
內(nèi)積運(yùn)算:a*b=(x1,y1)(x2,y2)= x1x2 +y1y2
垂直向量:a⊥b= x1x2 +y1y2=0
平行向量:a//b= x1y2 +x2y1=0
2、直線方程的幾種形式(記住其中一種就可以)
點(diǎn)斜式:y-yo=k(x-x0),已知斜率k和某點(diǎn)坐標(biāo)(xo,yo)
斜截式:y=kx+b,已知斜率k和在y軸的截距b
絕對(duì)值不等式的解法:
|ax+b|<c,相當(dāng)于解不等式-c<ax+b<c,< p=””>
(當(dāng)a<0的時(shí)候,不等號(hào)要改變方向)
|ax+b|>c,相當(dāng)于解不等式ax+b>c或ax+b<-c
導(dǎo)數(shù)的應(yīng)用
1、導(dǎo)數(shù)的幾何意義
(1)幾何意義:函數(shù)f(x)在點(diǎn)(x0,y0)處的導(dǎo)數(shù)值f'(x0),即為f(x)在點(diǎn)(x0,y0)處切線的斜率。
(2)常用導(dǎo)數(shù)公式:c為常數(shù)
2、函數(shù)單調(diào)性
f'(x)>0則f(x)在(a,b)內(nèi)嚴(yán)格單調(diào)增加
f'(x)<0則f(x)在(a,b)內(nèi)嚴(yán)格單調(diào)減少。
3、函數(shù)的極值、最大值、最小值
f'(x)=0的點(diǎn)—-函數(shù)f(x)的駐點(diǎn)。設(shè)為x0
(1)若x< x0時(shí),f'(x)>0;x> x0時(shí),f'(x)<0,則f(x0)為f(x)的極大值點(diǎn)。
(2)若x<x0時(shí),f'(x)x0時(shí),f'(x)0,則f(x0)為f(x)的極小值點(diǎn)
(3)如果f'(x)在x0的兩側(cè)的符號(hào)相同,那么f(x0)不是極值點(diǎn)。
(4)極值和端點(diǎn)的函數(shù)值中最大和最小的就是最大值和最小值。
以上就是自成學(xué)歷信息網(wǎng)為您收集的內(nèi)容希望能給您帶來(lái)幫助,想要了解更多升學(xué)攻略的相關(guān)信息,可持續(xù)關(guān)注自成學(xué)歷信息網(wǎng)(www.garharn.cn)。
聲明:本站為成考自考學(xué)歷交流信息網(wǎng)站,所有信息內(nèi)容均收集于互聯(lián)網(wǎng),本網(wǎng)提供的信息僅供參考和非商業(yè)性學(xué)習(xí)目的,由于各方面情況的調(diào)整與變化,實(shí)際情況以當(dāng)?shù)貦?quán)威機(jī)構(gòu)部門、院校公布的信息為準(zhǔn)。